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We analyze the effect of additive periodic stimuli in one-dimensional FitzHugh-Nagumo equations in an
excitable regime. With a suitable stimulus interval, the suppression of the pulse propagation occurs in some
parameter regime. This propagation failure comes from the formation of the “death spot” where successive
pulses annihilate. In the parameter regime where the solitary pulse cannot propagate in space stably, however,
periodic stimuli cause a propagation of envelope of a traveling pulse under a “resonance” condition, i.e., the
pulse at the leading edge disappears successively, however, an envelope is formed and propagates with keeping
its shape.
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Numerous chemicalf1,2g and biologicalf3g phenomena
can be modeled in the framework of reaction-diffusion sys-
tems, which have revealed an unexpectedly rich variety of
dynamical behaviors of pulsesf4–6g. Excitable systems play
a fundamental role in neural information processing and
many other biological systems. An initial stimulus is needed
to generate pulse propagation in an excitable regime, and the
inclusion of repetitive stimuli shows a variety of response
patternsf7–9g. Often, one measures only large amplitude su-
prathreshold activity at a particular location in the system,
for instance, the action potential in a nerve or ventricular
contraction in heart. An interesting feature of such an activity
is that in response to a periodic stimuli, the times between
these large excursion events can, when plotted in interspike
interval histogramsf10g, produce multimodal peaks. A recent
hypothesis is that such distributions may be associated with
stochastic resonancef11,12g. On the contrary, the possible
contribution of chaotic dynamics to the irregular firing is
consideredf13,14g.

The single element models are, however, too simple to
allow the activity on an actual neuron to be studied. Most
neurons have complicated shapes, particularly bifurcation
patterns in dendrites and axon terminals. Thus consideration
of the spatial degree of freedom is needed. It is known that a
localized stimulus of finite amplitude forms a propagating
pulse for spatially extended excitable systems, however, the
effect of periodic stimuli incorporating the spatially extended
system is not well known.

Here, we demonstrate the effect of periodic stimuli on
spatiotemporal pattern in one-dimensional FitzHugh-
NagumosFHNd model f15,16g with no noise,

tut = usu − ads1 − ud − v + e2uxx, s1d

vt = u − gv, x P s0,Ld, s2d

wherea, e, g, andt are parameters,u=usx,td the activator
andv=vsx,td the inhibitor.

A homogeneous initial conditionusx,0d=vsx,0d=0 is a
global stable solution with Neumann boundary condi-
tion u]u/]xux=0= u]u/]xux=L=0. Successive stimuli with a con-
stant time intervalts are applied instantaneously in the region
xP f0,lg periodically for a smalll, i.e., usx,td=u0 for x
P f0,lg and t=ht unts, nPNj wheredsxd is delta function.

Employing the following parameters:a=0.0,e=0.05,t
=0.018,g=1.0,L=20,l =0.2,u0=0.5, all pulses generated by
each stimulus propagate in space for largets say ts=10.0.
The parameter values used here admit the “oscillating wake”
of traveling pulse since the eigenvalues of the uniform sta-
tionary solutionsu,vd=s0,0d, which are given byl±=f−a
−gt±Î−4s1+agdt+sa+gtd2g / s2td, have an imaginary part.
Then the intrinsic period of the oscillation that is given by
tl=2p / uImsldu where Im represents imaginary part. In Fig.
1, the spatial pattern and phase plane plot of solitary travel-
ing pulse with both monotonic and oscillating wake are de-
picted. The time evolution ofu,v for x= l /2, the center of the
stimulation region, after a single stimulus att=0 is shown in
Fig. 2. Due to the oscillation, the excitability of the system
varies in time. The light and dark gray regions depicted in
Fig. 2 indicate the time intervals where excitable period
fusl /2 ,td.0g∧ fvsl /2 ,td,0g and refractory periodvsl /2 ,td
.0, respectively. For the light gray intervals, a relatively
small stimulus can excite the system, however, the system
cannot respond to any stimulus for the dark intervals.

Whent is changed to 0.019, the solitary pulse generated
by the single stimulus at t=0 with sl ,u0d where
hl u0.02,0.05,0.1,0.2j and hu0u0.5,1.0,1.5,2.0j disappears
eventually after traveling a finite distance. In order to deter-
mine the critical value numerically, we examine the norm,
nstd=e0

Lu2sx,td+v2sx,tddx, of the solitary pulse, which con-
verges to a positive value ast increases for a sufficiently
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large system size when the solitary pulse propagates stably.
By gradually increasing the parametert from 0.018 to 0.019,
we have found a critical valuet=tc,0.018 76 above which
the norm converges to zero and the solitary pulse can propa-
gate transiently for some finite intervalf19g.

Periodic stimuli form a pulse train whose spatiotemporal
behavior depends on the parameterts andt. Near the critical
parameter, we have found the following phenomena:sad
propagation failure, the leading pulse of the train vanishes
successively at some position after traveling a finite distance
even if the solitary pulse can propagate stably;sbd resonance
behavior, the pulse train can gradually propagate in space
with a suitablets although the solitary pulse disappears after
traveling a small distance. These exotic things depend in a
subtle way on the ratio between external periodts and the
intrinsic period of the system as explained in the following.
The term “resonance” stems from these two time scales.
Note that the traveling pulse solution without oscillating
wake does not show these exotic behaviors. Phase locking is
similarly observed for shorterts, however, the propagation
failure does not occur; the profile of stimulus response ratio
sSRRd is equal to 1.0 forts.1.0. When the solitary pulse
solution disappears through saddle-node bifurcation, any
stimulus interval cannot show resonance behavior; the SRR

equal to 0 for allts. Furthermore, constant stimulus, Dirichlet
boundary condition atus0,td=const, for example, cannot
produce pulse repeatedly, and thus these exotic phenomena
are never observed. The failure and resonance originate in
both the repetition of stimulation and oscillating wake of the
pulse.

Typical spatiotemporal patterns, locking, chaotic, propa-
gation failure, and resonance are shown in Fig. 3. To char-
acterize these response behaviors, it has been used the
stimulus-response ratiosSRRd f7–9g. For spatially extended
system, we introduce SRR as the ratio of the number of the
pulses that reach the opposite boundaryx=L to the number
of the stimuli as depicted in Fig. 4 for a sufficiently largeL.
In the following, we explain each spatiotemporal behavior
together with the SRR.

When the stable solitary traveling pulse exists, every
pulse generated by the stimulus would reach the opposite
boundary for largerts. Thus the SRR is equal to 1, that is
each stimulus would be followed by one traveling pulse, as it
is clearly shown in Fig. 4sad. However, the pulse propagation
does not occur by the stimulus with a shorter interval since
there are time intervals during which a perturbation does not
induce a new excitation. This interval is called the refractory
period. Since the refractory period varies in time attributable
to the oscillating wake, as shown in Fig. 2, whether the pulse
train generated by periodic stimuli propagates stably depends
on ts relative to the intrinsic periodtl.

Around ts,0.6 and 2.0 in Fig. 4sad, the pulse generated
every other stimuli and its spatiotemporal plot is also shown
in Fig. 3sad. The plateau of SRR shows phase locking or
parameter-response locking observed in many of chaotic sys-
temsf9,17g. Chaotic behavior is also observed at intermedi-
ate values between two locking state. Pulses among the pulse
train irregularly vanishfFig. 3sbdg. Interspike interval histo-
gram in the chaotic region is multimodal. The multimodal
distribution is also obtained by the FHN model without spa-
tial degree of freedomf13g. We note that the parameters used
in Ref. f13g also admit an oscillating wake since the eigen-
values of the rest state have imaginary parts.

For some parameter regions in which the SRR is 0 in Fig.
4sad, for example,tsP f2.82,2.87g, the pulse train can propa-
gate for some finite interval and cannot reach the opposite
boundaryx=L despite the existence of stable solitary pulse.
This propagation failure is caused by the formation of the
“death spot” where successive pulses annihilate suddenly af-
ter an initial transient. The spatiotemporal pattern for the
propagation failure is depicted in Fig. 3scd. The death spot is
formed by the following manner: once the pulse disappears
at a certain position by the effect of the oscillating wake of
the preceding pulse, the refractory period around the disap-
peared positionsdeath spotd varies in time because of the
after effect of the annihilation. When the time at which the
following pulse arrived at the death spot is a refractory pe-
riod, the pulse vanishes almost at the same position. After the
repetition of the annihilation process, the death spot is syn-
chronized with external periodts by adjusting its position.
Finally, the stationary death spot is formed at a certain loca-
tion. After forming the death spot, all pulses generated by
periodic stimuli propagate in space, and they reach the death
spot and then vanishfsee Fig. 3scdg.

FIG. 1. Spatial pattern and phase plane plot are shown for both
monotonic and oscillating wake pulse. To see the tiny oscillating
trail, we have used the transformationfsxd=sgnsxduxu1/2 for u andv.
In spatial patternssleft sided, the full sdottedd line indicates the
profile of fsud ffsvdg. sad Monotonic wake pulse:a=0.1,e
=0.05,g=1.0,t=0.002. sbd Oscillating wake pulse:a=0.0,e
=0.05,g=1.0,t=0.0185.

FIG. 2. The time evolution ofusx,td andvsx,td at the middle of
the stimulation areax= l /2, after a single stimulus,t=0.018 50. The
light and the dark gray regions represent the time intervals where
fustd.0g∧ fvstd,0g and vstd.0, respectively. The light gray re-
gion is easy to fire by the tiny stimulus, and the dark gray region
corresponds to refractory period. These time intervals are also
shown in Fig. 4.
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Abovetc, it is observed that the stable solitary pulse does
not exist, and the homogeneous stateusxd=vsxd=0 is glo-
bally stable in the absence of the repetitive stimulus. In this
parameter region, the solitary pulse generated by the single
stimulus att=0 propagates transiently for some finite inter-
val and disappears. By adding periodic stimuli, short lifetime
pulses are generated successively for a largerts since the
preceding pulse cannot affect the following pulse. However,
as we see in Fig. 3sdd, the formation of traveling pulse train
is observed with a suitable forcing period. Since the solitary
pulse cannot propagate stably in the parameter regime, the
leading pulse of the train disappears, while the envelope of
these waves expands as a function of time.

FIG. 4. The stimulus response ratior is calculated by changing
the stimulus intervalts. sad t=0.018 50: the zero firing rate nearts
=0.4 and 0.75 correspond to propagation failure in Fig. 3scd. sbd t
=0.018 85: indicated number is the order of the resonance plateau.
The light and the dark gray regions show excitable and refractory
period estimated from the time evolution as shown in Fig. 2,
respectively.

FIG. 5. The spatial pattern where resonance occurredst
=0.1885 andts=3.33d. The solitary pulse cannot propagate stably in
this parameter region. The fullsdottedd line indicates the profile of
fsud ffsvdg where fsxd is same as in Fig. 1.

FIG. 3. The spatiotemporal patterns of periodically stimulated FHN equations. A stable traveling pulse exists in the following parameters
t=0.0185,e=0.05,a=0.0,g=1.0,l =0.2 sad–scd. sad ts=1.0: the pulse generated every other stimulus;sbd ts=2.5: the pulse generates cha-
otically. scd ts=2.82: The propagation failure of traveling pulse. The pulses cannot propagate in space. Note that the stable traveling pulse
exists in this parameter region.sdd ts=2.34: the solitary pulse propagates to a certain location and annihilates fort=0.018 85. Each pulse
annihilates, however, the position of the leading pulse of the train gradually increase in time.
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The heuristic reason for this behavior lies in the following
fact: imaginary part of eigenvalues makes oscillating wake
behind the traveling pulsessee Fig. 5, the snapshot of the
profile of u,v is plotted where the oscillating wake is clearly
shownd. If the timing of the stimulus coincides with the
bump of the oscillating wake for the preceding pulse, i.e.,
light gray time intervals in Fig. 2, the “resonance condition”
is satisfied and the front pulse preserves the following pulse
which is generated by the next stimulus.

The time interval where the SRR value equals 1 will be
called the resonance region that is characterized by the in-
trinsic period tl in the following. We number each of the
plateaus where the SRR value is larger than 0.99 in the in-
creasing order fromts=0 and plot the ordern of the plateau
versus stimulus time intervalts in Fig. 6. Near the critical
parametert,tc, the relationtssnd, tln holds for largern
that means resonance structures appear periodically with the
interval tl.

The number of resonance areas depends on the distance to
the critical point. In fact, if one choosest close to the critical
value tc ssaddle-node bifurcation pointd, the number of the
resonance areas will be increased. In Fig. 7, the dependence
of ts andt on SRR is depicted, where the resonance structure
emerges at a larger stimulus interval near the critical point.

In summary, we have investigated the propagation failure
and the resonance behavior in Eqs.s2d with periodic stimuli

for a simple excitable parameter region. An essential dy-
namical ingredient of the behavior is that the solitary travel-
ing pulse has an oscillating wake, which comes from the
existence of the imaginary part of eigenvalues for the station-
ary solution. These phenomena can be observed in any ex-
citable media near the critical point where the stable solitary
traveling pulse with oscillating wake disappears through
saddle-node bifurcation. It is also interesting to contemplate
the infinitely long pulse train inR1 which has the leading
pulse. Here, the boundary between the region with and with-
out the pulse train would be move forwardsthe same direc-
tion of the pulse motiond or backward depending on the pa-
rameters. The study of these dynamics is of general
application to the understanding of disordered phenomena in
spatially extended excitable media, and may provide interest-
ing insight about excitable systems such as the cardiac dy-
namics.
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FIG. 6. The order of the resonance region versus stimulus time
interval ts is plotted. Stimulus time intervals which cause resonance
fitted to ts, tln sbroken lined asymptotically for largern; t
=0.01884.

FIG. 7. The parametert and stimulus intervalts dependency of
the SRR shown as a density plot, where blackswhited is 0 s1d, and
gray is an intermediate SRR value between 0 and 1. The broken line
indicatest=tc,0.188 38 where the solitary traveling solution dis-
appears. Above the critical value, the solitary traveling pulse cannot
propagate stably.

YANAGITA, NISHIURA, AND KOBAYASHI PHYSICAL REVIEW E 71, 036226s2005d

036226-4


