PHYSICAL REVIEW E 71, 036226(2005

Signal propagation and failure in one-dimensional FitzHugh-Nagumo equations
with periodic stimuli
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We analyze the effect of additive periodic stimuli in one-dimensional FitzHugh-Nagumo equations in an
excitable regime. With a suitable stimulus interval, the suppression of the pulse propagation occurs in some
parameter regime. This propagation failure comes from the formation of the “death spot” where successive
pulses annihilate. In the parameter regime where the solitary pulse cannot propagate in space stably, however,
periodic stimuli cause a propagation of envelope of a traveling pulse under a “resonance” condition, i.e., the
pulse at the leading edge disappears successively, however, an envelope is formed and propagates with keeping

its shape.
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Numerous chemicd]1,2] and biological[3] phenomena vi=u-w, xe(,L), (2)

can be modeled in the framework of reaction-diffusion sys-
tems, which have revealed an unexpectedly rich variety o\fN
dynamical behaviors of puls¢4—6]. Excitable systems play
a fundamental role in neural information processing an
many other biological systems. An initial stimulus is needed

to generate pulse propagation in an excitable regime, and t : SO
g P bropag g 10N du/ 9x|—q= dul dx|y- =0. Successive stimuli with a con-

inclusion of repetitive stimuli shows a variety of response oL e . .

patternd 7—-9]. Often, one measures only large amplitude gy Stant ime mt_er\{als are applied |nstar_1taneously in the region

prathreshold activity at a particular location in the system,xe[o'l] periodically for a smalll, €., u(x, ) =g for X
€[0,1] andt={t|nts, n e N} where 8(x) is delta function.

for instance, the action potential in a nerve or ventricular : )
contraction in heart. An interesting feature of such an activity EMPIoying the following parameters¥=0.0,e=0.05,7
is that in response to a periodic stimuli, the times betweerr 0-018,y=1.0L.=201=0.2,u,=0.5, all pulses generated by
these large excursion events can, when plotted in interspikgach stimulus propagate in space for latgeay t;=10.0.
interval histogram§10], produce multimodal peaks. A recent | N€ parameter values used here admit the “oscillating wake
hypothesis is that such distributions may be associated witR traveling pulse since the eigenvalues of the uniform sta-
stochastic resonandd1,12. On the contrary, the possible tlonary/ solution(u,v)=(0,0), which are given by, =[-a
contribution of chaotic dynamics to the irregular firing is = ¥7* V-4(1+ay)r+(a+yn?]/(27), have an imaginary part.
considered13,14. Then the intrinsic period of the oscillation that is given by
The single element models are, however, too simple té=27/|Im(\)| where Im represents imaginary part. In Fig.
allow the activity on an actual neuron to be studied. Mostl, the spatial pattern and phase plane plot of solitary travel-
neurons have complicated shapes, particularly bifurcatiofng pulse with both monotonic and oscillating wake are de-
patterns in dendrites and axon terminals. Thus consideratiopicted. The time evolution of,v for x=1/2, the center of the
of the spatial degree of freedom is needed. It is known that gtimulation region, after a single stimulustat0 is shown in
localized stimulus of finite amplitude forms a propagatingFig. 2. Due to the oscillation, the excitability of the system
pulse for spatially extended excitable systems, however, thearies in time. The light and dark gray regions depicted in
effect of periodic stimuli incorporating the spatially extendedFig. 2 indicate the time intervals where excitable period
system is not well known. [u(l/2,t)>0]0[v(I/2,t)<0] and refractory period(1/2,t)
Here, we demonstrate the effect of periodic stimuli on>0, respectively. For the light gray intervals, a relatively
spatiotemporal pattern in one-dimensional FitzHugh-small stimulus can excite the system, however, the system

herea, €, v, and r are parametergj=u(x,t) the activator
Gandvzv(x,t) the inhibitor.

A homogeneous initial condition(x,0)=v(x,0)=0 is a
obal stable solution with Neumann boundary condi-

Nagumo(FHN) model[15,16 with no noise, cannot respond to any stimulus for the dark intervals.
When 7 is changed to 0.019, the solitary pulse generated
= u(U=a)(1-u) —v + Uy, (1) py the single stimulus att=0 with (I,u;) where

{110.02,0.05,0.1,0)2 and {uy|0.5,1.0,1.5,2.p disappears
eventually after traveling a finite distance. In order to deter-

*Electronic address: yanagita@nsc.es.hokudai.ac.jp mine the critical value numerically, we examine the norm,
"Electronic address: nishiura@aurora.es.hokudai.ac.jp n(t) = [5u?(x,t) +v2(x,t)dx, of the solitary pulse, which con-
*Electronic address: ryo@math.sci.hiroshima-u.ac.jp verges to a positive value dsincreases for a sufficiently
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equal to O for alks. Furthermore, constant stimulus, Dirichlet
boundary condition au(0,t)=const, for example, cannot
produce pulse repeatedly, and thus these exotic phenomena
are never observed. The failure and resonance originate in
both the repetition of stimulation and oscillating wake of the
pulse.

Typical spatiotemporal patterns, locking, chaotic, propa-
gation failure, and resonance are shown in Fig. 3. To char-
acterize these response behaviors, it has been used the
stimulus-response ratiGRR [7-9]. For spatially extended
system, we introduce SRR as the ratio of the number of the

pulses that reach the opposite boundent to the number
FIG. 1. Spatial pattern and phase plane plot are shown for bot@f the stimuli as depicted in Fig. 4 for a sufficiently large

monotonic and oscillating wake pulse. To see the tiny oscillating!n the following, we explain each spatiotemporal behavior

trail, we have used the transformatiéx) =sgr(x)|x|*2 for uandp.  together with the SRR. , ,

In spatial patterngleft side, the full (dotted line indicates the When the stable solitary traveling pulse exists, every

profile of f(u) [f(v)]. (@ Monotonic wake pulse:a=0.1,e pulse generated by the stimulus would reach the opposite
=0.05,y=1.0,7=0.002. (b) Oscillating wake pulse:@=0.0 ¢ boundary for largets. Thus the SRR is equal to 1, that is

=0.05,y=1.0,r=0.0185. each stimulus would be followed by one traveling pulse, as it
is clearly shown in Fig. @&). However, the pulse propagation

oes not occur by the stimulus with a shorter interval since

\ere are time intervals during which a perturbation does not
induce a new excitation. This interval is called the refractory
period. Since the refractory period varies in time attributable
to the oscillating wake, as shown in Fig. 2, whether the pulse
train generated by periodic stimuli propagates stably depends
on tg relative to the intrinsic period,.

large system size when the solitary pulse propagates stabl
By gradually increasing the parameteirom 0.018 to 0.019,
we have found a critical value=7,~0.018 76 above which
the norm converges to zero and the solitary pulse can prop
gate transiently for some finite interv@l9].

Periodic stimuli form a pulse train whose spatiotempora
behavior depends on the paramdteand . Near the critical > Pe
parameter, we have found the following phenomefa: Around t;~0.6 and 2.0 in Fig. @), the pulse generated
propagation failure, the leading pulse of the train vanishe§VerY other stimuli and its spatiotemporal plot is also ;hown
successively at some position after traveling a finite distanc& Fi9- 3@). The plateau of SRR shows phase locking or
even if the solitary pulse can propagate stabiby:resonance parameter-response Iockln_g o_bserved in many of (_:haotlc sys-
behavior, the puise train can gradually propagate in SpaC@ms[Q,lﬂ. Chaotic behawo_r is also observed at intermedi-
with a suitablet, although the solitary pulse disappears afterd!€ values between two locking state. Pulses among the pulse
traveling a small distance. These exotic things depend in H&in irregularly vanist{Fig. 3(b)]. Interspike interval histo-

subtle way on the ratio between external pertgéind the ~ 9r@m in the chaotic region is multimodal. The multimodal
intrinsic period of the system as explained in the following. distribution is also obtained by the FHN model without spa-

The term “resonance” stems from these two time scales_t.ial degree of freedorf_rlB].We rjotg that the pa_lrameters _used
Note that the traveling pulse solution without oscillating " Ref-[13] also admit an oscillating wake since the eigen-

wake does not show these exotic behaviors. Phase locking Y&/ues of the rest state have imaginary parts.
similarly observed for shortet, however, the propagation  FOr Some parameter regions in which the SRR is 0 in Fig.
failure does not occur; the profile of stimulus response rati¢'@. for examplefse[2.82,2.87, the pulse train can propa-
(SRR is equal to 1.0 fort:>1.0. When the solitary pulse 9ate for some f|n|t¢ mterval_and cannot reach t_he opposite
solution disappears through saddle-node bifurcation, an oundaryx=L despite the existence of stable solitary pulse.

stimulus interval cannot show resonance behavior; the SRRRNIS propagation failure is caused by the formation of the
“death spot” where successive pulses annihilate suddenly af-

ter an initial transient. The spatiotemporal pattern for the
propagation failure is depicted in Fig(c3. The death spot is
formed by the following manner: once the pulse disappears
at a certain position by the effect of the oscillating wake of
the preceding pulse, the refractory period around the disap-
peared position(death spotvaries in time because of the
after effect of the annihilation. When the time at which the
following pulse arrived at the death spot is a refractory pe-
FIG. 2. The time evolution ofi(x,t) andu(x,t) at the middle of ~ 110d, the pulse vanishes almost at the same position. After the

the stimulation area=1/2, after a single stimulug;=0.018 50. The  repetition of the annihilation process, the death spot is syn-
light and the dark gray regions represent the time intervals wher6hronized with external perioty by adjusting its position.
[u(t)>0]0[v(t) < 0] and v(t) >0, respectively. The light gray re- Finally, the stationary death spot is formed at a certain loca-
gion is easy to fire by the tiny stimulus, and the dark gray regiontion. After forming the death spot, all pulses generated by
corresponds to refractory period. These time intervals are alsperiodic stimuli propagate in space, and they reach the death
shown in Fig. 4. spot and then vanisfsee Fig. &)].
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FIG. 3. The spatiotemporal patterns of periodically stimulated FHN equations. A stable traveling pulse exists in the following parameters
7=0.0185£=0.05,4=0.0,y=1.0,1=0.2 (a)—(c). (a) ts=1.0: the pulse generated every other stimulb;t;=2.5: the pulse generates cha-
otically. (c) ts=2.82: The propagation failure of traveling pulse. The pulses cannot propagate in space. Note that the stable traveling pulse
exists in this parameter regiofd) ts=2.34: the solitary pulse propagates to a certain location and annihilates @018 85. Each pulse
annihilates, however, the position of the leading pulse of the train gradually increase in time.

Above 7, it is observed that the stable solitary pulse does

1 not exist, and the homogeneous stat®)=v(x)=0 is glo-
(@) bally stable in the absence of the repetitive stimulus. In this
H parameter region, the solitary pulse generated by the single
stimulus att=0 propagates transiently for some finite inter-
0 0 1 5 3 i 5 6 val and disappears. By adding periodic stimuli, short lifetime
pulses are generated successively for a latgesince the
n= n=2 n=3 preceding pulse cannot affect the following pulse. However,
1 as we see in Fig.(8), the formation of traveling pulse train
(b) is observed with a suitable forcing period. Since the solitary
" pulse cannot propagate stably in the parameter regime, the
leading pulse of the train disappears, while the envelope of
0 these waves expands as a function of time.
0 1 2 3 4 5 6
ts > 1
" .
FIG. 4. The stimulus response ratids calculated by changing -0.5
the stimulus intervatg. (a) 7=0.018 50: the zero firing rate negr 0 % 24

=0.4 and 0.75 correspond to propagation failure in Fig).3b) 7

=0.018 85: indicated number is the order of the resonance plateau. FIG. 5. The spatial pattern where resonance occurfed
The light and the dark gray regions show excitable and refractory=0.1885 ands=3.33. The solitary pulse cannot propagate stably in
period estimated from the time evolution as shown in Fig. 2,this parameter region. The fultiotted line indicates the profile of
respectively. f(u) [f(v)] wheref(x) is same as in Fig. 1.
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FIG. 6. The order of the resonance region versus stimulus time
intervaltg is plotted. Stimulus time intervals which cause resonance
fitted to ts~t,n (broken ling asymptotically for largern; = 0.018
=0.01884. ’ tg

The heuristic reason for this behavior lies in the following FS'%;' I;I’he paraméeter and lstimulhus inﬁrv‘z‘? de_pe;dlency gf
fact: imaginary part of eigenvalues makes oscillating wakd® SRR shown as a density plot, where blaskite) is 0 (1), and
behind the traveling pulsésee Fig. 5, the snapshot of the gray is an intermediate SRR value between 0 and 1. The broken line
profile ofu,v is plotted where the 6scillating wake is clearly indicatest=17.~ 0.188 38 where the solitary traveling solution dis-
shown. If ’the timing of the stimulus coincides with the appears. Above the critical value, the solitary traveling pulse cannot

) S : . ropagate stably.
bump of the oscillating wake for the preceding pulse, |.e.,p Pagd y
light gray time intervals in Fig. 2, the “resonance condition” for a simple excitable parameter region. An essential dy-
is satisfied and the front pulse preserves the following puls@amical ingredient of the behavior is that the solitary travel-
which is generated by the next stimulus. ing pulse has an oscillating wake, which comes from the

The time interval where the SRR value equals 1 will beexistencg of the imaginary part of eigenvalues for th_e station-
called the resonance region that is characterized by the irgry solution. These phenomena can be observed in any ex-
trinsic periodt, in the following. We number each of the citable media near the critical point where the stable solitary
plateaus where the SRR value is larger than 0.99 in the inraveling pulse with oscillating wake disappears through
creasing order froms=0 and plot the orden of the plateau Saddle-node bifurcation. It is also interesting to contemplate
versus stimulus time interval in Fig. 6. Near the critical the infinitely long pulse train k! which has the leading
parameterr~ 7., the relationt(n)~t,n holds for largern pulse. Here, the boundary between the region with and with-

that means resonance structures appear periodically with tf't thé pulse train would be move forwaftihe same direc-
intervalt, 1on of the pulse motionor backward depending on the pa-

The number of resonan ; depends on the distance’ meters. The study of these dynamics is of general
€ number of resonance areas depends on the distance plication to the understanding of disordered phenomena in
the critical point. In fact, if one choose<close to the critical

spatially extended excitable media, and may provide interest-

value 7. (saddle-node bifurcation pointthe number of the g insight about excitable systems such as the cardiac dy-
resonance areas will be increased. In Fig. 7, the dependengg mics.

of tyand7on SRR is depicted, where the resonance structure

emerges at a larger stimulus interval near the critical point.  This work was partially supported by Grant-in-Aids for
In summary, we have investigated the propagation failuréscientific Research from the Ministry of Education, Science,

and the resonance behavior in E¢®. with periodic stimuli ~ and Culture of Japan.
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